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Abstract

We have incorporated cluster computing fundamen-
tals into the introductory computer science curricu-
lum at UC Berkeley. For the first course, we have
developed coursework and programming problems in
Scheme centered around Google’s MapReduce. To al-
low students only familiar with Scheme to write and
run MapReduce programs, we designed a functional
interface in Scheme and implemented software to al-
low tasks to be run in parallel on a cluster. The
streamlined interface enables students to focus on
programming to the essence of the MapReduce model
and avoid the potentially cumbersome details in the
MapReduce implementation, and so it delivers a clear
pedagogical advantage.

The interface’s simplicity and purely functional
treatment allows students to tackle data-parallel
problems after the first two-thirds of the first intro-
ductory course.

In this paper we describe the system implementa-
tion to interface our Scheme interpreter with a clus-
ter running Hadoop (a Java-based MapReduce im-
plementation). Our design can serve as a prototype
for other such interfaces in educational environments
that do not use Java and therefore cannot simply use
Hadoop. We also outline the MapReduce exercises
we have introduced to our introductory course, which
allow students in an introductory programming class
to begin to work with data-parallel programs and de-
signs.

1 Introduction

Computer science today is rapidly moving towards
parallelism as a means to surmount increasing prob-
lem sizes and the declining rate of clock speed im-
provements. Despite the changing environment, un-
dergraduate curriculum, particularly at the introduc-
tory level, often provides little or no coverage of basic
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parallel programming concepts. Our project intro-
duces parallelism to the lower-division computer sci-
ence courses at UC Berkeley, primarily our very first
course, CS61A. We address cluster computing instead
of multithreaded parallelism because the details as-
sociated with multiprocessor systems would exceed
the scope of the introductory courses, and many of
the data-parallel programming concepts remain the
same. There is an entire upper-division course dedi-
cated to multi-core concurrency issues [9]. By cover-
ing parallelism in introductory courses, students gain
an earlier exposure to and greater appreciation of its
advantages, disadvantages, and uses.

In CS61A, we chose to teach cluster computing by
introducing Google’s MapReduce [2] at a high level of
abstraction, as it provides both a practical and intel-
lectually compelling example of a highly parallelized
system. MapReduce is presented entirely through a
Scheme interface which works with Hadoop (an open-
source implementation of MapReduce) [8] to execute
student programs on a new cluster.

In this paper, we describe the Scheme-Hadoop in-
terface and outline our implementation, as well as
provide examples of the material we developed for
the course.

2 About CS61A

UC Berkeley’s introductory computer science course
is based on Abelson and Sussman’s Structure and In-
terpretation of Computer Programs [1]. Program-
ming for the course is done entirely in Scheme, a
dialect of Lisp, and the only previous programming
experience required is familiarity with the concept
of recursion. The course gives students a broad
overview of computer science concepts including func-
tional programming, higher-order functions, abstract
data types, abstraction techniques, and language im-
plementation.



Each week, the course of 200 to 400 students meets
for two to three lectures and smaller 30-person lab-
oratory and discussion sections. In addition, the
course assigns weekly homework and four program-
ming projects spread over the course of the semester.
The students run their programs in a modified ver-
sion of STk [3], a Scheme interpreter written by Erick
Gallesio and customized for use in UC Berkeley CS
instruction.

3 MapReduce Basics

MapReduce [2] is a programming paradigm and
framework developed by Google for simplified,
parallel data processing on clusters of comput-
ers. As its name implies, it was inspired by the
Lisp list-processing functions reduce,also known as
accumulate, and map.

In Scheme, map and reduce allow for convenient
expression of functional programming operations:

(map (lambda (x) (* x x)) (1 2 3 4))
= (1 4 9 16)

(accumulate + 0 ’(1 4 9 16))

= 30

The MapReduce process was inspired by a composi-
tion of the two functions:

(accumulate + 0 (map (lambda (x) (* x x))
’(1 2 3 4))
= 30

However, the MapReduce model behaves slightly
differently. In particular, all input, output, and inter-
mediate data are expressed as key/value pairs. The
MapReduce infrastructure handles partitioning and
distribution of input key/value pair data across a
cluster and executes instances of the mapper proce-
dure on the input in parallel. Programmers must
provide “mapper” and “reducer” procedures, analo-
gous to the function arguments provided to map and
accumulate above. The mapper functions each act
on pieces of the input data, and emit intermediate
key/value pairs. The infrastructure then groups and
sorts these by key. Finally, the group of values asso-
ciated with each key is processed by an instance of
the reducer procedure, producing output key/value
pairs.

For a dataflow comparison between the MapRe-
duce model and the map/accumulate composition

that is introduced early in CS61A, see Figure 1. For
a more detailed explanation of MapReduce, see [2].

4 Scheme Interface Design

In designing the Scheme interface for MapReduce,
our highest priority was simplicity. We did not want
to expose students to any unnecessary details of the
inner workings of Hadoop; we wanted the interface to
be opaque beyond the MapReduce model in its purest
form, so that students could express the required pro-
cedures in familiar terms. Despite the need for sim-
plicity, we did not want to compromise MapReduce’s
expressive power.

Our final interface function takes the following
form:

(mapreduce mapper reducer reducer-base input)

Here, the mapper is a function that acts on a sin-
gle key-value pair and returns a (possibly empty) list
of corresponding intermediate key-value pairs as out-
put. The reducer is a Lisp-standard reducer func-
tion, with a next-value and value-so-far as inputs, and
some combination of the two as output. The input
can be any data available on the distributed filesys-
tem, including excerpts from the Project Gutenberg
[6] texts. When Hadoop finishes, our system presents
a stream to the student with the MapReduce output.

To perform a distributed grep operation on files
identified by the text-ID string, a student would en-
ter the following expressions into STk:

(define (mapper doc-line-pair)

(if (match? pattern (kv-value doc-line-pair))

(1ist doc-line-pair)
nil))
(mapreduce mapper cons nil "text-ID")

Here, each key-value pair input to the mapper has
a document name as its key and a line of text from
the document as its value.

To perform a distributed word count, returning a
table mapping words to their number of occurrences,
a student would enter the following:

(define (mapper doc-line-pair)
(map (lambda (wd) (make-kv-pair wd 1))
(kv-value doc-line-pair)))
(mapreduce mapper + 0 "text-ID")
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Figure 1: On the left is the dataflow for the simple map/accumulate composition. On the right is the
dataflow for a MapReduce computation. In particular, the MapReduce model includes a sort, a grouping of
intermediate values by key, multiple parallel reductions, and multiple outputs.

The inner map function is used to break the line-
by-line input from the text-ID files into words.

Using a powerful high-level language such as
Scheme allowed us to greatly simplify the students’
interface to MapReduce. For example, in Hadoop’s
Java implementation of the distributed grep example
above, the code required to initialize and carry out
the MapReduce task is more than 50 lines. Addition-
ally, students do not need to learn anything about
the structure of Hadoop to be able to implement
parallel MapReduce tasks; the Hadoop-specific ob-
jects, framework, and configuration files are entirely
avoided, allowing students to focus on learning the
programming model and its uses. Our interface also
matches the functional composition model that in-
spired MapReduce much more closely than the orig-
inal interface.

5 Implementation in Hadoop

The Scheme interface required a system that would
allow a student using STk to start a Hadoop instance
on the cluster, transport the Scheme code and envi-
ronment to the worker nodes (the “tasktrackers”),
interpret the Scheme code in parallel map tasks and
reduce tasks, and return the generated output to STk
in a tractable form.

In this section we give an overview of our system
design and discuss particular implementation chal-
lenges.

5.1 System Overview

For a summary diagram of the system, see Figure 2.

There are two fundamental parts to the system:
the front-end node and the “worker” nodes. The
front-end node is used for user interaction, serial
computations, and initiating MapReduce jobs on the
cluster, and so it runs STk, a Java Virtual Machine
(JVM) providing the Java Native Interface (JNI) [7],
and the Hadoop jobtracker JVM. The worker nodes
run the Hadoop tasktrackers that carry out the par-
allel Map and Reduce computations, and thus each
runs an instance of a Java-based Scheme interpreter.

Users run  MapReduce tasks and in-
teract with output files entirely through
STk on the front-end node. The first

mapreduce function invocation in STk sets up
a JNI JVM to access the Hadoop API. The
mapreduce invocation in STk writes the user’s
Scheme code to the Hadoop Distributed File System
(HDFS), along with the current environment so that
the worker machines can make reference to the user’s
local variables, and uses the JNI JVM to initialize
Hadoop and pass in strings to identify the code,
environment, and input file locations on HDFS.
Input files are large, predetermined datasets that
exist on HDFS, and so users pass in an identifying
string to the mapreduce invocation which is mapped
to a predetermined HDFS path. After the parallel
computation is carried out and output files are
copied from HDFS to the front-end node’s local
filesystem, local output filenames are passed from
the jobtracker JVM through the JNI JVM and back
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Figure 2: (a) shows the flow of data as STk exports its environment and user code to HDFS and initializes
the worker node tasktrackers running SISC, and (b) shows how the results of the parallel computation are
copied from HDFS to the front-end local disk and returned within STk

to STk, which presents these files to the user in the
form of a single lazy-evaluated stream of key-value
pairs.

On the worker nodes, Hadoop tasktracker instances
execute Java-based Scheme interpreters as both the
mapper and reducer classes. The interpreters load
the appropriate Scheme environment along with the
Scheme code from HDFS. Input data files are parsed
line by line and presented with the document name as
the key. The intermediate pairs are typed as extended
Hadoop Text objects, and all Scheme values (includ-
ing numbers) are emitted as Text objects. As out-
put key/value pairs are emitted they are written to
HDFS, and once the reductions finish they are copied
to the front-end node and presented to STk.

5.2 Implementation Challenges
5.2.1 The C/Java Barrier and JNI

The Berkeley STk interpreter is implemented in C,
while the Hadoop API is entirely in Java. To allow
STk to communicate with the Hadoop JVMs, we em-
ployed the Java Native Interface (JNT). The first time
the mapreduce function is invoked, a JVM is instan-
tiated and the appropriate Hadoop classes are run
(subsequent invocations use the same JVM instanti-
ation). STk passes the necessary file identifier strings

into the JNT JVM, and once the parallel computation
is complete, output filename strings are returned to
STk via JNI.

5.2.2 Exporting the Environment

Scheme manages variable-value mappings in con-
structs called environments. An environment con-
sists of frames containing variable-value mappings,
and frames hierarchically point to other frames for
the purpose of scoping. During execution, Scheme
looks up variables with respect to a frame, following
the hierarchy of frames as necessary until the global
(root) frame is reached.

For our system to operate correctly, STk must
export the entire environment at the point of the
mapreduce invocation to the mapper and reducer
JVMs so that the user’s Scheme code can be executed
on the cluster in the correct context.

Scheme variables can refer to a variety of types,
including numbers, symbols, pairs, and closures. A
pair is a simple abstract data type consisting of two
elements. A closure represents a procedure, and each
closure must be linked to the frame in which it was
defined. These are among the most commonly used
types in our course, and as such we chose to sup-
port their usage and export. This choice also meant
that we do not support other, less commonly used



datatypes, such as vectors (arrays).

Our environment export solution stems from the
realization that the Scheme environment is a directed
cyclic graph. Nodes in this graph are either frames,
closures, or pairs, and edges represent their respective
frame dependencies. To serialize the environment we
simply encode it as an adjacency list, associating each
frame, closure and pair with a unique identification
number that is created when the object is initialized
within STk. STk writes the serialized environment
to HDFS, and the mapper and reducer Scheme inter-
preters load the environment accordingly.

5.2.3 Java-Based Scheme Interpreter

Hadoop’s mapper and reducer classes must be able to
interpret Scheme code in parallel. Towards this end,
we wanted a Scheme interpreter that would easily in-
terface with the Hadoop API, so we chose the Second
Interpreter of Scheme Code (SISC) [5], a Java-based
Scheme interpreter. Each instance of the Hadoop
mapper and reducer classes runs an associated in-
stance of the interpreter.

5.2.4 Cascading Jobs

More sophisticated MapReduce operations, and more
useful and compelling examples, require MapReduce
tasks to be cascaded such that output generated from
one operation is used as input to another. Our design
separates the local data with which students directly
interact in STk from the data available to the clus-
ter on HDF'S, so that MapReduce output on HDFS
must be copied to the local disk so it can be viewed
in STk. To allow output data to be used again as
input data, we leave the original copy on HDFS and
return an identifying string to STk, so that if the
student uses the output data in another call to the
mapreduce function, the identifying string is passed
back to Hadoop and used to find the appropriate
data. This approach avoids a significant amount
of communication between the local filesystem and
HDF'S which would be impossible to accomplish given
the class size, while still allowing students to interact
with the data on HDFS. However, it also means that
in between MapReduce tasks, students cannot apply
ordinary Scheme operations in STk. Since the input
and output data are usually very large, serial opera-
tions are considered infeasible, and thus our approach
does not preclude computations that would be useful
in the class context.

6 MapReduce Curriculum in

CS61A

The MapReduce material in CS61A consists of two
lectures, one homework assignment, and one lab
assignment. The first lecture occurs early in the
semester, and introduces the MapReduce model in
a non-parallel version that shows the use of key-value
pairs and makes explicit the grouping and sorting by
key that comes between the Map and the Reduce
parts of a MapReduce invocation. The second lec-
ture is late in the semester and focuses on parallelism
and on the details of using the parallel cluster. Fun-
damental parallelism concepts are explained and the
STk-Hadoop interface is introduced. Most of the stu-
dents’ time in the latter week is allotted to hands-on
practice with the lab and homework, and so our cur-
riculum development focused on creating problems
for the students to solve with MapReduce.

The programming problems needed to be tractable
for students with no previous coursework in computer
science but also interesting and useful enough to jus-
tify the pragmatism of MapReduce. The starting
point for our brainstorms was the original MapRe-
duce paper and its provided examples. Below is a list
of some of the problems given in the lab and home-
work.

1. Word Count Table — Given a large set of doc-
uments, construct a table mapping words found
in the documents to the number of instances of
the word. Then, using the word count table as
input, write another MapReduce step to gener-
ate a list of words used only once.

The word count problem is one of the examples
supplied in the original paper, and is a good first
step in understanding the MapReduce paradigm.
The extension of finding words used only once
exemplifies the potential usefulness of cascaded
MapReduce computations.

2. Inverted Index — Given a large set of docu-
ments, construct an index mapping words to the
list of documents in which they appear. As an
extension, filter out words shorter than a given
length, so as to avoid unimportant words such
as “a,” “so,” and “the.”

The inverted word index is another of the orig-
inal Google-supplied examples, and it provides
a simple motivation for MapReduce’s usefulness
in the context of search engines and information



retrieval. The word length filtering allows stu-
dents to practice with a mapper that emits an
empty list, a difference from Scheme’s map be-
havior. We provide a subset of the documents in
Project Gutenberg [6] as the input.

3. Spam Filter — We want to implement a simple
spam filtering idea by producing a “blacklist” of
e-mail addresses that are spamming users. Spam
messages are sent to many addresses at once, and
so a spam message can be identified by the most
commonly used subject lines; if an address sends
many messages with the most common subject
lines, it is likely a spamming address. Given
a large collection of (simulated) e-mail server
records, find the top ten addresses that have sent
the most messages with frequently-recurring sub-
ject lines.

This problem is much more involved, since it re-
quires three MapReduce steps to complete, but it
is also more realistically useful. The first step is
to generate a table with subject lines as keys and
counts of occurrences as values. From the tabu-
lation of subject lines, another MapReduce step
is used to sort the table by occurrence counts,
so that the most commonly-used subject lines
can be identified. Finally, given the ten most
frequent subject lines in a short “violation” list,
another MapReduce step is used to make a table
with from-addresses as keys and counts of “vi-
olation” e-mails sent as values. An additional
step could be added to sort the final table by vi-
olation counts, but since it would be identical to
the second step, this additional step is omitted.

4. Conceptual Questions — Could you use
MapReduce to perform a parallelized Sieve of Er-
atosthenes? If so, describe the process briefly. If
not, why not?

This question gives an example of a problem that
requires global state to be shared between paral-
lel workers, and thus it does not fit naturally into
MapReduce’s functional, data-driven model.

We met two principal difficulties when brainstorm-
ing problems: a limitation on data structures pre-
sented in the introductory course, and an inherent
redundancy among the MapReduce examples. The
first difficulty exists simply because CS61A does not
assume any previous familiarity with data structures
such as graphs, and so several ideas involving graph

traversal (motivated by map search) could not be
used.

The second difficulty was a realization that each
of the single-step MapReduce tasks that we could
brainstorm could essentially be reduced to one of the
MapReduce examples in the original paper. The orig-
inal examples enumerate the useful variations of in-
put/output behaviors very thoroughly, and so within
the domain of simple mapper and reducer functions,
many problems began to sound the same. It was this
fundamental redundancy in simple MapReduce ex-
amples that motivated us to design multi-step prob-
lems, decomposing larger computations into the sim-
ple tasks that MapReduce handles best.

7 Parallelism in Other Courses

CS61A provides an overview of programming in a
high-level language, and so its discussion of MapRe-
duce involves only the high-level parallelism model.
The other courses in the introductory series, CS61B
and CS61C, have a lower level of abstraction in their
approach to computer science, and so their treatment
of cluster computing varies accordingly.

CS61B is a Java-based course on data structures
and algorithms. It is also intended to give students
experience working in larger, more complex program-
ming projects. Thus it was natural for CS61B to ex-
pose students to the Java-based Hadoop system and
allow them to program directly with the API. For
CS61B we developed a homework assignment involv-
ing a hill climbing optimization problem; given a row
of contiguous movie theater seats and a set of inter-
personal relationships (enemy, friend, boyfriend, etc.)
that specify neighbor preferences, find the best possi-
ble seating arrangement. The assignment introduces
the basics of iterative optimization and paralleliza-
tion over random initial conditions, as well as the
structure of the Hadoop system, and so it is well-
suited for the CS61B abstraction level.

CS61C is the lowest level course, introducing C and
assembly programming, operating systems concepts,
and machine architecture. It is also the first course to
discuss overhead issues associated with memory, disk,
and network communications, and so the parallelism
discussion in CS61C covers similar issues involved in
optimizing parallel speedup. The CS61C curriculum
we developed consists of a lecture on cluster paral-
lelism, providing an overview of both MapReduce and
the more flexible Message Passing Interface (MPI)
and their respective tradeoffs, as well as a two-hour



programming lab. The first incarnation of the lab
exercise focused on teaching simple MPI program-
ming techniques and subroutines in C, and students
were able to execute their MPI code on one of the
University’s clusters. However, after hearing student
feedback, it was clear that the lab should focus more
on speedup issues and benchmarking for more real-
istic programs and less on learning MPI. The new
lab is currently under development, and will be cen-
tered on a case study of an MPI version of Conway’s
Game of Life and how its parameters (board size,
number of nodes and processes, geometry of decom-
position, communication block size) affect the parallel
speedup.

8 Related Work

The University of Washington has an upper divi-
sion course based on MapReduce and distributed
systems[4]. However, since their course is targeted
at more advanced students, they spend significantly
more time discussing the details of distributed com-
puting and networks. Their course is also taught
in Java, and as a result they use Hadoop directly.
However, this involves significantly more pedagogi-
cal overhead than our approach; for example, they
devote an entire lab to learning how to use Hadoop.

9 Summary and Future Work

The new Scheme interface allows CS61A students to
write and execute real MapReduce programs while
maintaining an abstraction level appropriate for the
course, and the subsequent courses effectively “lift
the hood.”

We launched the new curriculum along with the
STk-Hadoop interface during the Fall 2007 semester.
The interface scaled well to the 30-student lab sec-
tions and all the students were able to work con-
currently. However, we encountered several setbacks
while running the labs. Since the machines and net-
works were new and relatively untested, there were
several instances of communication failure between
the lab machines and the cluster. Additionally, we
found the performance to be lacking: fixed setup
overhead time was about 30 seconds for any job,
and Scheme programs performed over 10 times slower
than equivalent Java programs. We believe the loss
to be somewhere in the I/O handling of the cluster-
side software, and we anticipate that we will be able

to reduce the slowdown to an acceptable level.

As a result, students’ responses were mixed. Most
were excited about the new material while others
were frustrated by the technical difficulties and oc-
casional slowdowns. To address these problems in
the immediate future, we plan to provide smaller in-
stances of the exercise data sets so that the same
MapReduce programming can be practiced off-line.

Our most significant future work is to tune both the
cluster’s setup and the STk-Hadoop interface to in-
crease its reliability and performance. One area that
is particularly ripe for optimization is the client-side
Scheme interpreter’s processing of input and output.
Since Scheme has provided such a clear and simple
way to express MapReduce programs, we also plan
to investigate other modern programming paradigms
that we may be able to incorporate into Scheme in a
similarly clear, educational manner.

All of our curriculum content and Scheme bindings
will be available as a free download from the section
of the Google Code for Educators website specializing
in Distributed Systems [4].
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