
Themis: An I/O-Efficient MapReduce

Alexander Rasmussen
arasmuss@cs.ucsd.edu

UC San Diego

Michael Conley
mconley@cs.ucsd.edu

UC San Diego

Rishi Kapoor
rkapoor@cs.ucsd.edu

UC San Diego

Vinh The Lam
vtlam@cs.ucsd.edu

UC San Diego

George Porter
gmporter@cs.ucsd.edu

UC San Diego

Amin Vahdat
vahdat@cs.ucsd.edu

UC San Diego & Google, Inc.

ABSTRACT
“Big Data” computing increasingly utilizes the MapReduce
programming model for scalable processing of large data col-
lections. Many MapReduce jobs are I/O-bound, and so min-
imizing the number of I/O operations is critical to improv-
ing their performance. In this work, we present Themis,
a MapReduce implementation that reads and writes data
records to disk exactly twice, which is the minimum amount
possible for data sets that cannot fit in memory.

In order to minimize I/O, Themis makes fundamentally
different design decisions from previous MapReduce imple-
mentations. Themis performs a wide variety of MapReduce
jobs – including click log analysis, DNA read sequence align-
ment, and PageRank – at nearly the speed of TritonSort’s
record-setting sort performance [29].

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed applications

General Terms
Design, Performance, Experimentation

1. INTRODUCTION
Building efficient and scalable data processing systems

is a challenging – and increasingly important – problem.
Scale-out software systems implementing the MapReduce
programming model, such as Google’s MapReduce [8] and
Apache Hadoop [39], have made great strides in providing
efficient system architectures for these workloads [40]. How-
ever, a significant gap remains between the delivered per-
formance of these systems and the potential performance
available from the underlying hardware [29, 2].

Our recent experience building TritonSort [29], a large-
scale sorting system, shows that an appropriately balanced
implementation can realize orders of magnitude improve-
ment in throughput and efficiency. Translating these types

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00.

of gains to more general-purpose data processing systems
will help close this efficiency gap, allowing more work to be
performed with the same hardware, or the same amount of
work to be performed with less hardware. This improved
efficiency will result in substantially lowered system cost,
energy usage, and management complexity.

Given that many MapReduce jobs are I/O-bound, an ef-
ficient MapReduce system must aim to minimize the num-
ber of I/O operations it performs. Fundamentally, every
MapReduce system must perform at least two I/O oper-
ations per record when the amount of data exceeds the
amount of memory in the cluster [1]. We refer to a system
that meets this lower-bound as having the “2-IO” property.
Any data processing system that does not have this prop-
erty is doing more I/O than it needs to. Existing MapRe-
duce systems incur additional I/O operations in exchange
for simpler and more fine-grained fault tolerance.

In this paper, we present Themis1, an implementation of
MapReduce designed to have the 2-IO property. Themis
accommodates the flexibility of the MapReduce program-
ming model while simultaneously delivering high efficiency.
It does this by considering fundamentally different points in
the design space than existing MapReduce implementations:

1. Eliminating task-level fault tolerance: At the
scale of tens of thousands of servers, failures are common,
and so MapReduce was designed with a strong task-level
fault tolerance model. However, more aggressive fault tol-
erance gains finer-grained restart at the expense of lower
overall performance. Interestingly, many Hadoop users re-
port cluster sizes of under 100 nodes [14], much smaller
than those deployed by MapReduce’s early adopters. In
2011, Cloudera’s VP of Technology Solutions stated that
the mean size of their clients’ Hadoop clusters is 200 nodes,
with the median size closer to 30 [23]. At this moderate
scale, failures are much less common, and aggressive fault
tolerance is wasteful in the common case. Foregoing task-
level fault tolerance permits a design that achieves the 2-IO
property. When a job experiences a failure, Themis simply
re-executes it. This optimistic approach to fault tolerance
enables Themis to aggressively pipeline record processing
without unnecessarily materializing intermediate results to
disk. As we will show, for moderate cluster sizes this ap-
proach has the counter-intuitive effect of improving perfor-
mance despite the occasional job re-execution.

1Themis is a Titan in Greek mythology who is tasked with
creating balance, order and harmony.

2. Dynamic, adaptive memory allocation: To main-
tain the 2-IO property, Themis must process a record com-
pletely once it is read from disk. This prevents Themis from
putting records back on disk in response to memory pressure
through swapping or writing spill files. Themis implements
a policy-based, application-level memory manager that pro-
vides fine-grained sharing of memory between operators pro-
cessing semi-structured, variably-sized records. This allows
it to support datasets with as much as a factor of 107 skew
between record sizes while maintaining the 2-IO property.

3. Central management of shuffle and disk I/O:
Themis uses a centralized, per-node disk scheduler that en-
sures that records from multiple sources are written to disk
in large batches to reduce disk seeks. Themis delivers nearly
sequential disk I/O across a variety of MapReduce jobs, even
for workloads that far exceed the size of main memory.

To validate our design, we have written a number of
MapReduce programs on Themis, including a web user ses-
sion tracking application, PageRank, n-gram counting, and
a DNA read sequence alignment application. We found that
Themis processes these jobs at nearly the per-node perfor-
mance of TritonSort’s record-setting sort run and nearly the
maximum sequential speed of the underlying disks.

2. MOTIVATION
Themis achieves the 2-IO property by making different

design decisions than those made in Google’s and Hadoop’s
MapReduce implementations. In this section, we discuss our
motivations for making these decisions.

2.1 Target Deployment Environments
A large number of“Big Data”clusters do not approach the

size of warehouse-scale data centers like those at Google and
Microsoft because moderately-sized clusters (10s of racks or
fewer) are increasingly able to support important real-world
problem sizes. The storage capacity and number of CPU
cores in commodity servers are both increasing rapidly. In
Cloudera’s reference system design [7], in which each node
has 16 or more disks, a petabyte worth of 1TB drives fits into
just over three racks, or about 60 nodes. Coupled with the
emergence of affordable 10 Gbps Ethernet at the end host
and increasing bus speeds, data can be packed more densely
than ever before while keeping disk I/O as the bottleneck
resource. This implies that fewer servers are required for
processing large amounts of data for I/O-bound workloads.
We now consider the implications of this increased density
on fault tolerance.

2.2 Fault Tolerance for “Dense” Clusters
A key principle of Themis’s design is that it performs

job-level, rather than task-level, fault tolerance. Job-level
fault tolerance allows for much more aggressive operator
pipelining than task-level fault tolerance can achieve while
still maintaining the 2-IO property. However, it is not self-
evident that the overhead of re-executing failed jobs does not
cancel any performance gained by this aggressive pipelining.
In this section, we show not only that job-level fault toler-
ance is a feasible approach for moderately-sized clusters, but
also that there are significant potential performance benefits
for using job-level fault tolerance in these environments.

Understanding the expected impact of failures is critical

Component Failure rates
Node 4.3 months
Disk 2-4% annualized
Rack 10.2 years

Table 1: Component-level failure rates observed in
a Google data center as reported in [12].

to choosing the appropriate fault tolerance model. MapRe-
duce was designed for clusters of many thousands of ma-
chines running inexpensive, failure-prone commodity hard-
ware [8]. For example, Table 1 shows component-level mean-
time to failure (MTTF) statistics in one of Google’s data
centers [12]. Google’s failure statistics are corroborated by
similar studies of hard drive [27, 33] and node [25, 32] fail-
ure rates. At massive scale, there is a high probability that
some portion of the cluster will fail during the course of a
job. To understand this probability, we employ a simple
model [3], shown in Equation 1, to compute the likelihood
that a node in a cluster of a particular size will experience
a failure during a job:

P (N, t,MTTF) = 1 − e−N·t/MTTF (1)

The probability of a failure occurring in the next t seconds
is a function of (1) the number of nodes in the cluster, N ,
(2) t, and (3) the mean time to failure of each node, MTTF ,
taken from the node-level failure rates in Table 1. This
model assumes that nodes fail with exponential (Pareto)
probability, and we simplify our analysis by considering node
failures only. We do this because disk failures can be made
rare by using node-level mechanisms (i.e., RAID), and cor-
related rack failures are likely to cripple the performance of
a cluster with only a few racks. Based on the above model,
in a 100,000 node data center, there is a 93% chance that a
node will fail during any five-minute period. On the other
hand, in a moderately-sized cluster (e.g., 200 nodes, the av-
erage Hadoop cluster size as reported by Cloudera), there is
only a 0.53% chance of encountering a node failure during a
five-minute window, assuming the MTTF rates in Table 1.

This leads to the question of whether smaller deployments
benefit from job-level fault tolerance, where if any node
running a job fails the entire job restarts. Intuitively, this
scheme will be more efficient overall when failures are rare
and/or jobs are short. In fact, we can model the expected
completion time of a job S(p, T) as:

S(p, T) = T

(
p

1 − p
+ 1

)
(2)

where p is the probability of a node in the cluster failing,
and T is the runtime of the job (a derivation of this result is
given in Appendices A and B). This estimate is pessimistic,
in that it assumes that jobs fail just before the end of their
execution. By combining equations 1 and 2, we can compute
the expected benefit–or penalty–that we get by moving to
job-level fault tolerance. Modeling the expected runtime of
a job with task-level fault tolerance is non-trivial, so we in-
stead compare to an error-free baseline in which the system’s
performance is not affected by node failure. This comparison
underestimates the benefit of job-level fault tolerance.

Figure 1 shows the expected performance benefits of
job-level fault tolerance compared to the error-free base-
line. More formally, we measure performance benefit as
S(P (·), Tjob)/Ttask, where Tjob is the time a job on an error-

0 500 1000 1500 2000 2500 3000 3500 4000

Cluster Size

-100

0

100

200

300

400

500

600

700
%

 I
m

p
ro

v
em

en
t

v
s.

 T
a
sk

-L
ev

el
 F

T
Job-level FT 1x faster

Job-level FT 2x faster

Job-level FT 4x faster

Job-level FT 8x faster

(a) 5-minute job

0 500 1000 1500 2000 2500 3000 3500 4000

Cluster Size

-100

0

100

200

300

400

500

600

700

%
 I

m
p

ro
v
em

en
t

v
s.

 T
a
sk

-L
ev

el
 F

T

Job-level FT 1x faster

Job-level FT 2x faster

Job-level FT 4x faster

Job-level FT 8x faster

(b) 1-hour job (see text below for expla-
nation of marked point)

0 500 1000 1500 2000 2500 3000 3500 4000

Cluster Size

-100

0

100

200

300

400

500

600

700

%
 I

m
p

ro
v
em

en
t

v
s.

 T
a
sk

-L
ev

el
 F

T

Job-level FT 1x faster

Job-level FT 2x faster

Job-level FT 4x faster

Job-level FT 8x faster

(c) 10-hour job

Figure 1: A lower-bound of the expected benefit of job-level fault tolerance for varying job durations and
cluster sizes. Given that an error-free execution of a job with task-level fault tolerance takes five minutes
(a), an hour (b), or ten hours (c) to complete, we explore the expected performance improvement gained
from job-level fault tolerance if an error-free run of the job executes 1, 2, 4, and 8x faster with job-level fault
tolerance than it does with task-level fault tolerance.

free cluster takes to execute with job-level fault tolerance
and Ttask is the time the same job takes to execute with
task-level fault tolerance.

The benefits of job-level fault tolerance increase as the
error-free performance improvement made possible by mov-
ing to job-level fault tolerance (i.e. Ttask/Tjob) increases.
For example, if Ttask/Tjob is 4, Ttask is one hour and we
run on a cluster of 1,000 nodes, we can expect Themis to
complete the job 240% faster than the task-level fault tol-
erant alternative on average; this scenario is marked with a
star in Figure 1(b). There are also situations in which job-
level fault tolerance will significantly under-perform task-
level fault tolerance. For example, if Ttask/Tjob is 2, Themis
will under-perform a system with task-level fault tolerance
for clusters bigger than 500 nodes. From this, we make two
key observations: for job-level fault tolerance to be advan-
tageous, the cluster has to be moderately-sized, and Themis
must significantly outperform the task-level alternative.

In the next section, we describe key challenges in designing
a system that meets these high performance requirements
while maintaining the 2-IO property.

3. THE CHALLENGE OF SKEW
One of MapReduce’s attractive properties is its ability to

handle semi-structured and variably-sized data. This vari-
ability makes maintaining the 2-IO property a challenge. In
this section, we describe two sources of variability and the
resulting requirements they place on our design.

An input dataset can exhibit several different kinds of
skew, which simply refers to variability in its structure and
content. These include:

Record Size Skew: In systems with semi-structured or
unstructured data, some records may be much larger than
others. This is called record size skew. In extreme cases, a
single record may be gigabytes in size.

Partitioning Skew: Data that is not uniformly dis-
tributed across its keyspace exhibits partitioning skew. This
can cause some nodes to process much more data than oth-
ers if the data is näıvely partitioned across nodes, creating
stragglers [9]. Handling skew in MapReduce is complicated
by the fact that the distribution of keys in the data produced
by a map function is often not known in advance. Existing

MapReduce implementations handle partitioning skew by
spilling records to disk that cannot fit into memory.

Computational Skew: In a dataset exhibiting compu-
tational skew, some records take much longer than average
to process. Much of the work on mitigating computational
skew in MapReduce involves exploiting the nature of the
particular problem and relying on a degree of user guid-
ance [16] or proactively re-partitioning the input data for a
task [17]. As the focus of our work is I/O-bound jobs, we
do not consider computational skew in this work.

Performance Heterogeneity: The performance of a
population of identical machines can vary significantly; the
reasons for this heterogeneity are explored in [31]. In addi-
tion, clusters are rarely made up of a homogeneous collection
of machines, due both to machine failures and planned in-
cremental upgrades. While we believe that the techniques
presented in this work can be applied to heterogeneous clus-
ters, we have not evaluated Themis in such a setting.

To handle record skew, Themis dynamically controls its
memory usage, which we describe in Section 5. Themis
adopts a sampling-based skew mitigation technique to min-
imize the effects of partitioning skew. We discuss this miti-
gation technique in Section 6.

4. SYSTEM ARCHITECTURE
In this section, we describe the design of Themis.

4.1 Core Architecture
Themis reuses several core runtime components that were

used to build the TritonSort [29] sorting system. Like Tri-
tonSort, Themis is written as a sequence of phases, each of
which consists of a directed dataflow graph of stages con-
nected by FIFO queues. Each stage consists of a number of
workers, each running as a separate thread.

4.2 MapReduce Overview
Unlike existing MapReduce systems, which executes map

and reduce tasks concurrently in waves, Themis implements
the MapReduce programming model in three phases of oper-
ation, summarized in Table 2. Phase zero, described in Sec-
tion 6, is responsible for sampling input data to determine
the distribution of record sizes as well as the distribution of
keys. These distributions are used by subsequent phases to

Input
Disks

Sender Receiver

Map into
per-destination buffers

Net

Chainer
Demux

Demux Coalescer

Hp()

Hp()

Writer

Writer

Writer

Reader

Reader

Reader

map()

Hn()

map()

Hn()

Receive into
per-source buffers

Demultiplex into
per-partition chains of buffers

Merge chains and
send to writers

Intermediate
Disks

Figure 2: Stages of Phase One (Map/Shuffle) in Themis

Phase Description Required?
0 Skew Mitigation Optional
1 map() and shuffle Required
2 sort and reduce() Required

Table 2: Themis’s three stage architecture

minimize partitioning skew. Phase one, described in Sec-
tion 4.3, is responsible for applying the map function to each
input record, and routing its output to an appropriate parti-
tion in the cluster. This is the equivalent of existing systems’
map and shuffle phases. Phase two, described in Section 4.4,
is responsible for sorting and applying the reduce function
to each of the intermediate partitions produced in phase one.
At the end of phase two, the MapReduce job is complete.

Phase one reads each input record and writes each inter-
mediate record exactly once. Phase two reads each interme-
diate partition and writes its corresponding output partition
exactly once. Thus, Themis has the 2-IO property.

4.3 Phase One: Map and Shuffle
Phase one is responsible for implementing both the map

operation as well as shuffling records to their appropriate
intermediate partition. Each node in parallel implements
the stage graph pipeline shown in Figure 2.

The Reader stage reads records from an input disk and
sends them to the Mapper stage, which applies the map

function to each record. As the map function produces inter-
mediate records, each record’s key is hashed to determine
the node to which it should be sent and placed in a per-
destination buffer that is given to the sender when it is full.
The Sender sends data to remote nodes using a round-robin
loop of short, non-blocking send() calls. We call the Reader
to Sender part of the pipeline the “producer-side” pipeline.

The Receiver stage receives records from remote nodes
over TCP using a round-robin loop of short, non-blocking
recv() calls. We implemented a version of this stage that
uses select() to avoid unnecessary polling, but found that
its performance was too unpredictable to reliably receive
all-to-all traffic at 10Gbps. The receiver places incoming
records into a set of small per-source buffers, and sends those
buffers to the Demux stage when they become full.

The Demux stage is responsible for assigning records to
partitions. It hashes each record’s key to determine the par-
tition to which it should be written, and appends the record
to a small per-partition buffer. When that buffer becomes
full, it is emitted to the Chainer stage, which links buffers
for each partition into separate chains. When chains exceed
a pre-configured length, which we set to 4.5 MB to avoid do-
ing small writes, it emits them to the Coalescer stage. The

Coalescer stage merges chains together into a single large
buffer that it sends to the Writer stage, which appends
buffers to the appropriate partition file. The combination of
the Chainer and Coalescer stages allows buffer memory in
front of the Writer stage to be allocated to partitions in a
highly dynamic and fine-grained way. We call the Receiver
to Writer part of the pipeline the “consumer-side” pipeline.

A key requirement of the consumer-side pipeline is to per-
form large, contiguous writes to disk to minimize seeks and
provide high disk bandwidth. We now describe a node-wide,
application-driven disk scheduler that Themis uses to ensure
that writes are large.

Each writer induces back-pressure on chainers, which
causes the per-partition chains to get longer. In this way,
data gets buffered within the chainer. This buffering can
grow very large–to over 10GB on a machine with 24GB of
memory. The longer a chain becomes, the larger the corre-
sponding write will be. We limit the size of a chain to 14MB,
to prevent very large writes from restricting pipelining. The
large writes afforded by this scheduler allow Themis to write
at nearly the sequential speed of the disk. [29] provides a
detailed evaluation of the relationship between write sizes
and system throughput.

Signaling back-pressure between the chainer and the
writer stage is done by means of write tokens. The presence
of a write token for a writer indicates that it can accept ad-
ditional buffers. When the writer receives work, it removes
its token, and when it finishes, it returns the token. Tokens
are also used to prevent the queues between the chainer and
writer stages from growing without bound.

4.4 Phase Two: Sort and Reduce

Reader Sorter Reducer WriterIntermediate
Disks

Output
Disks

Figure 3: Stages of Phase Two (Sort/Reduce) in
Themis

By the end of phase one, the map function has been
applied to each input record, and the records have been
grouped into partitions and stored on the appropriate node
so that all records with the same key are stored in a single
partition. In phase two, each partition must be sorted by
key, and the reduce function must be applied to groups of
records with the same key. The stages that implement phase
two are shown in Figure 3.

There is no network communication in phase two, so nodes
process their partitions independently. Entire partitions are
read into memory at once by the Reader stage. A Sorter

TritonSort Themis
Used in Phase Subject to
0 1 2 deadlock?

Pool X X X X
Quota X X X

Constraint X X X

Table 3: A comparison of Themis’s memory alloca-
tor implementations.

stage sorts these partitions by key, keeping the result in
memory. The Reducer stage applies the reduce function
to all records sharing a key. Reduced records are sent to the
Writer, which writes them to disk.

All records with a single key must be stored in the same
partition for the reduce function to produce correct output.
As a result, partitioning skew can cause some partitions to
be significantly larger than others. Themis’s memory man-
agement system allows phase two to process partitions that
approach the size of main memory, and its optional skew
mitigation phase can reduce partitioning skew without user
intervention. We describe these systems in Sections 5 and
6, respectively.

A key feature of Themis’s sorter stage is that it can select
which sort algorithm is used to sort a buffer on a buffer-by-
buffer basis. There is a pluggable sort strategy interface that
lets developers use different sorting algorithms; currently
quicksort and radix sort are implemented. Each sort strat-
egy calculates the amount of scratch space it needs to sort
the given buffer, depending on the buffer’s contents and the
sort algorithm’s space complexity. For both quicksort and
radix sort, this computation is deterministic. In Themis,
radix sort is chosen if the keys are all the same size and
the required scratch space is under a configurable threshold;
otherwise, quicksort is used.

5. MEMORY MANAGEMENT AND FLOW
CONTROL

Themis relies on a dynamic and flexible memory man-
agement system to partition memory between operators.
Themis’s memory manager actually serves two distinct pur-
poses: (1) it enables resource sharing between operators, and
(2) it supports enforcing back-pressure and flow control. In
the first case, Themis requires flexible use of memory given
our desire to support large amounts of record size skew while
maintaining the 2-IO property. In the second case, individ-
ual stages in the Themis pipeline naturally run at different
speeds (e.g., the network is 10 Gbps, whereas the disk sub-
system only supports writing at approximately 5.5 Gbps),
and so back-pressure and flow control are needed to prevent
faster stages from starving slower stages for resources.

Themis supports a single memory allocation interface with
pluggable memory policies. We first describe the memory al-
locator’s interface, and then describe the three policies that
we’ve implemented.

5.1 Memory allocation interface
Worker stages in Themis allocate space for buffers and

other necessary scratch space using a unified and simple
memory allocator interface, shown in Table 4.

Memory allocators can be assigned on a stage-by-stage
basis, but in the current implementation we assume that
memory regions are allocated and deallocated by the same

Free Space

Stage 1 Stage 2 Stage 3 Stage 4

Pool A Pool B Pool C

Figure 4: A diagrammatic overview of pool-based
memory management. Note that memory in each
pool is divided into fixed-size regions, and that any
memory not allocated to pools cannot be utilized by
stages.

allocator. The allocate call blocks until the underlying
memory allocation policy satisfies the allocation, which can
be an unbounded amount of time. As we will see, this sim-
ple mechanism, paired with one of three memory policies,
provides for both resource sharing as well as flow control.
We now examine each of these polices.

5.2 Policy 1: Pool-Based Management
The first policy we consider is a “pool” memory policy,

which is inherited from TritonSort [29]. A memory pool is
a set of pre-allocated buffers that is filled during startup.
Buffers can be checked out from a pool, and returned when
they are finished being used as illustrated in Figure 4. When
a worker tries to check out a buffer from an empty pool, it
blocks until another worker returns a buffer to that pool.
The pool memory policy has the advantage that all mem-
ory allocation is done at startup, avoiding allocation during
runtime. Through efficient implementation, the overhead
of checking out buffers can be very small. This is especially
useful for stages that require obtaining buffers with very low
latency, such as the Receiver stage, which obtains buffers to
use in receiving data from the network. The receiver receives
uninterpreted bytes from network sockets into small, fixed-
size byte buffers. These buffers are passed to a subsequent
stage, which converts them into buffers containing complete
records. For this reason, the receiver can use pool-based
management while still supporting record-size skew.

Pools can be used to provide resource sharing between
workers by giving each of those workers a reference to a
single pool. The producer-consumer relationship between
pairs of stages also provides a form of flow control; the up-
stream stage checking out buffers can only produce work at
the rate at which the downstream stage can return them
to the pool. However, pools have several disadvantages.
First, the buffers in a pool are all fixed-size, and so the
pool memory policy supports very limited amounts of data
skew. By carving memory up into fixed-size pools, the max-
imum record size supported by this policy is limited to the
size of the smallest pool. Additionally, buffer pools reserve
a fixed amount of memory for a particular pair of stages.
One consequence of this is a loss of flexibility; if one stage
temporarily needs more memory than usual (e.g., if it is
handling a large record), it cannot “borrow” that memory
from another stage due to the static partitioning of memory
across pools.

5.3 Policy 2: Quota-Based Management
While the pool memory policy is simple, it is quite in-

flexible, and does not handle skewed record sizes very well.

Function Description
CallerID registerCaller(Worker worker) Register worker with the allocator
void* allocate(CallerID caller, uint64_t size) allocate a memory region of size bytes for caller

void deallocate(void* memory) deallocate memory that was allocated by this allocator

Table 4: A summary of the Themis memory allocator API

QuotaA

Stage 1 Stage 2 Stage 3 Stage 4

Free
Space

Unmanaged
Space

Figure 5: A diagrammatic overview of quota-based
memory management. In this figure, QuotaA pro-
vides a memory quota between Stage 1 and Stage
4. Stages 2 and 3 use unmanaged memory created
with standard malloc and free syscalls.

The quota-based memory policy is designed to support more
flexible memory allocation while still providing flow control.
At a high level, the quota policy ensures that stages produc-
ing records do not overwhelm stages that eventually con-
sume them. For example, most of our evaluation is writer
limited, and so we want to ensure that the receiver stage,
which produces records received from the network, does not
overwhelm the writer stage, which is the bottleneck.

Themis has three such producer-consumer pairs: between
the reader and the mapper (with the mapper acting as the
consumer), between the mapper and the sender (with the
mapper acting as the producer), and between the receiver
and the writer. The mapper acts as both a consumer and a
producer, since it is the only stage in the phase one pipeline
that creates records as directed by the map function that
were not read by the reader.

Quotas are enforced by the queues between stages. A
quota can be viewed as the amount of memory that the
pipeline between a producer and a consumer can use. When
a producer stage pushes a buffer into the pipeline, the size
of that buffer is debited from the quota. When a consumer
stage consumes that buffer, the buffer’s size is added back
to the quota. If a producer is about to exceed the quota,
then it blocks until the consumer has consumed sufficient
memory. Quota-based allocation is illustrated in Figure 5.

Quota-based memory management dramatically reduces
the number of variables that need to be tuned relative to the
pool-based memory policy. One need only adjust the quota
allocations present between pairs of stages, rather than the
capacity of a much larger number of buffer pools. Addi-
tionally, stages that are not producers and consumers do
not need to do any form of coordination, which makes their
memory allocations very fast.

Quota-based management assumes that any scratch space
or additional memory needed by stages between the pro-
ducer and consumer is accounted for in the quota. This is to
prevent intermediate stages from exceeding the total amount
of memory, since their memory accesses are not tracked. It
also tacitly assumes that the size of a buffer being produced
cannot exceed the size of the quota. This is much less re-

Free
Space

Globally
Managed Space

Memory Manager

Stage 1 Stage 2 Stage 3 Stage 4

Figure 6: A diagrammatic overview of constraint-
based memory management. All stages’ memory
requests are satisfied by a central memory manager
that schedules these requests according to the stage
graph’s structure.

strictive than a pool-based approach, as quotas are typically
several gigabytes.

5.4 Policy 3: Constraint-Based Management
In situations where the amount of memory used by

stages to process records cannot be determined in advance,
quota-based systems are not ideal for providing flow con-
trol. In these situations, Themis uses a more heavyweight,
constraint-based memory management policy.

In the constraint-based memory policy, the total amount
of memory in use by workers is tracked centrally in the mem-
ory allocator. If a worker requests memory, and enough
memory is available, that request is granted immediately.
Otherwise, the worker’s request is added to a per-worker
queue of outstanding requests and the worker sleeps on
a condition variable until the request can be satisfied.
Constraint-based allocation is illustrated in Figure 6.

When multiple workers have outstanding unsatisfied al-
location requests, the memory allocator prioritizes worker
requests based on a worker’s distance in the stage graph to
a stage that consumes records. The producer-side pipeline
measures distance to the sender stage, and the consumer-
side pipeline measures distance to the writer stage. The
rationale behind this decision is that records that are being
processed should be completely processed before more work
is admitted. This decision is inspired by work on live-lock
prevention in routers [22]. In this way, the constraint-based
allocator implements flow control based on the structure of
the dataflow graph.

While this system places precise upper bounds on the
amount of memory present in the system, it requires a great
deal of coordination between workers, which requires signif-
icant lock contention in our implementation. In effect, the
reliance on keeping the amount of available memory consis-
tent requires that all allocation and deallocation requests are
processed serially. Hence, constraint-based memory alloca-
tion is useful for situations where the number of allocation
requests being made is relatively small, but the probability
of exceeding available memory in common-case operation is

high. Phase two in Themis uses constraint-based memory
management for precisely these reasons.

In the constraint-based policy, it is possible that cer-
tain allocation interleavings can trigger deadlock. Pre-
dicting whether a general dataflow system will deadlock is
undecidable [24], and deadlock prevention requires knowl-
edge of data dependencies between stages that we deemed
too heavyweight. To addressed the problem of deadlocks,
Themis provides a deadlock detector. The deadlock detec-
tor periodically probes workers to see if they are waiting for
a memory allocation request to complete. If multiple probe
cycles pass in which all workers are waiting for an alloca-
tion or are idle, the deadlock detector informs the memory
allocator that a deadlock has occurred. We have not experi-
enced deadlock using the policy choices described in Table 3
in any of the MapReduce jobs we have evaluated. Efficient
ways of handling deadlock is the subject of ongoing work.

In summary, Themis provides a pluggable, policy-driven
memory allocation subsystem that provides for flexible re-
source sharing between stages and workers to handle record
size skew while also enabling flow control.

6. SKEW MITIGATION
To satisfy the 2-IO property, Themis must ensure that ev-

ery partition can be sorted in memory, since an out-of-core
sort would induce additional I/Os. In addition, to support
parallelism, partitions must be small enough that several
partitions can be processed in parallel. Phase zero is re-
sponsible for choosing the number of partitions, and select-
ing a partitioning function to keep each partition roughly the
same size. This task is complicated by the fact that the data
to be partitioned is generated by the map function. Thus,
even if the distribution of input data is known, the distri-
bution of intermediate data may not be known. This phase
is optional: if the user has knowledge of the intermediate
data’s distribution, they can specify a custom partitioning
function, similar to techniques used in Hadoop.

Phase zero approximates the distribution of intermediate
data by applying the map function to a subset of the in-
put. If the data is homoscedastic, then a small prefix of the
input is sufficient to approximate the intermediate distribu-
tion. Otherwise, more input data will need to be sampled,
or phase two’s performance will decrease. DeWitt et al. [10]
formalize the number of samples needed to achieve a given
skew with high probability; typically we sample 1 GB per
node of input data for nodes supporting 8 TB of input. The
correctness of phase two only depends on partitions being
smaller than main memory. Since our target partition size is
less than 5% of main memory, this means that a substantial
sampling error would have to occur to cause job failure. So
although sampling does impose additional I/O over the 2-IO
limit, we note that it is a small and constant overhead.

Once each node is done sampling, it transmits its sample
information to a central coordinator. The coordinator uses
these samples to generate a partition function, which is then
re-distributed back to each node.

6.1 Mechanism
On each node, Themis applies the map operation to a pre-

fix of the records in each input file stored on that node. As
the map function produces records, the node records informa-
tion about the intermediate data, such as how much larger
or smaller it is than the input and the number of records

generated. It also stores information about each intermedi-
ate key and the associated record’s size. This information
varies based on the sampling policy. Once the node is done
sampling, it sends that metadata to the coordinator.

The coordinator merges the metadata from each of the
nodes to estimate the intermediate data size. It then uses
this size, and the desired partition size, to compute the num-
ber of partitions. Then, it performs a streaming merge-sort
on the samples from each node. Once all the sampled data is
sorted, partition boundaries are calculated based on the de-
sired partition sizes. The result is a list of “boundary keys”
that define the edges of each partition. This list is broadcast
back to each node, and forms the basis of the partitioning
function used in phase one.

The choice of sampling policy depends on requirements
from the user, and we now describe each policy.

6.2 Sampling Policies
Themis supports the following sampling policies:
(1) Range partitioning: For MapReduce jobs in which

the ultimate output of all the reducers must be totally or-
dered (e.g., sort), Themis employs a range partitioning sam-
pling policy. In this policy, the entire key for each sampled
record is sent to the coordinator. A downside of this policy
is that very large keys can limit the amount of data that can
be sampled because there is only a limited amount of space
to buffer sampled records.

(2) Hash partitioning: For situations in which total
ordering of reduce function output is not required, Themis
employs hash partitioning. In this scheme, a hash of the
key is sampled, instead of the keys themselves. This has
the advantage of supporting very large keys, and allowing
Themis to use reservoir sampling [37], which samples data
in constant space in one pass over its input. This enables
more data to be sampled with a fixed amount of buffer. This
approach also works well for input data that is already par-
tially or completely sorted because adjacent keys are likely
to be placed in different partitions, which spreads the data
across the cluster.

7. EVALUATION
We evaluate Themis through benchmarks of several differ-

ent MapReduce jobs on both synthetic and real-world data
sets. A summary of our results are as follows:

• Themis is highly performant on a wide variety of
MapReduce jobs, and outperforms Hadoop by 3x - 16x
on a variety of common jobs.

• Themis can achieve nearly the sequential speed of the
disks for I/O-bound jobs, which is approximately the
same rate as TritonSort’s record-setting performance.

• Themis’s memory subsystem is flexible, and is able
to handle large amounts of data skew while ensuring
efficient operation.

7.1 Workloads and evaluation overview
We evaluate Themis on a cluster of HP DL380G6 servers,

each with two Intel E5520 CPUs (2.27 GHz), 24 GB of
memory, and 16 500GB 7200 RPM 2.5” SATA drives. Each
hard drive is configured with a single XFS partition. Each

Data Size
Job Name Description Input Intermediate Output

Sort-100G Uniformly-random sort, 100GB per node 2.16TB 2.16TB 2.16TB
Sort-500G Uniformly-random sort, 500GB per node 10.8TB 10.8TB 10.8TB
Sort-1T Uniformly-random sort, 1TB per node 21.6TB 21.6TB 21.6TB

Sort-1.75T Uniformly-random sort, 1.75TB per node 37.8TB 37.8TB 37.8TB
Pareto-1M Sort with Pareto-distributed key/value sizes, α = 1.5,

x0 = 100 (1MB max key/value size)
10TB 10TB 10TB

Pareto-100M Sort with Pareto-distributed key/value sizes, α = 1.5,
x0 = 100 (100MB max key/value size)

10TB 10TB 10TB

Pareto-500M Sort with Pareto-distributed key/value sizes, α = 1.5,
x0 = 100 (500MB max key/value size)

10TB 10TB 10TB

CloudBurst CloudBurst (two nodes, aligning lake-

wash_combined_v2.genes.nucleotide)
971.3MB 68.98GB 517.9MB

PageRank-U PageRank (synthetic uniform graph, 25M vertices, 50K
random edges per vertex)

1TB 4TB 1TB

PageRank-PL PageRank (synthetic graph with power-law vertex in-
degree, 250M vertices)

934.7GB 3.715TB 934.7GB

PageRank-WEX PageRank on WEX page graph 1.585GB 5.824GB 2.349GB
WordCount Count words in text of WEX 8.22GB 27.74GB 812MB

n-Gram Count 5-grams in text of WEX 8.22GB 68.63GB 49.72GB
Click-Sessions Session extraction from 2TB of synthetic click logs 2TB 2TB 8.948GB

Table 5: A description and table of abbreviations for the MapReduce jobs evaluated in this section. Data
sizes take into account 8 bytes of metadata per record for key and value sizes

XFS partition is configured with a single allocation group
to prevent file fragmentation across allocation groups, and
is mounted with the noatime flag set. Each server has two
HP P410 drive controllers with 512MB on-board cache, as
well as a Myricom 10 Gbps network interface. All nodes are
connected to a single Cisco Nexus 5596 datacenter switch.
All servers run Linux 2.6.32. Our implementation of Themis
is written in C++ and is compiled with g++ 4.6.2.

To evaluate Themis at scale, we often have to rely on
large synthetically-generated data sets, due to the logistics
of obtaining and storing freely-available, large data sets. All
synthetic data sets are evaluated on 20 cluster nodes. Non-
synthetic data sets are small enough to be evaluated on a
single node.

All input and output data is stored on local disks with-
out using any distributed filesystem and without replication.
We are actively exploring integrating Themis with storage
systems like HDFS, but an evaluation of such integration is
the subject of future work.

We evaluate Themis’s performance on several different
MapReduce jobs. A summary of these jobs is given in Ta-
ble 5, and each job is described in more detail below.

Sort: Large-scale sorting is a useful measurement of the
performance of MapReduce and of data processing systems
in general. During a sort job, all cluster nodes are read-
ing from disks, writing to disks, and doing an all-to-all net-
work transfer simultaneously. Sorting also measures the
performance of MapReduce independent of the computa-
tional complexity of the map and reduce functions them-
selves, since both map and reduce functions are effectively
no-ops. We study the effects of both increased data density
and skew on the system using sort due to the convenience
with which input data that meets desired specifications can
be generated. We generate skewed data with a Pareto dis-
tribution. The record size in generated datasets is limited
by a fixed maximum, which is a parameter given to the job.

WordCount: Word count is a canonical MapReduce job.
Given a collection of words, word count’s map function emits
<word, 1> records for each word. Word count’s reduce func-
tion sums the occurrences of each word and emits a single
<word, N> record, where N is the number of times the word
occurred in the original collection.

We evaluate WordCount on the 2012-05-05 version of the
Freebase Wikipedia Extraction (WEX) [38], a processed
dump of the English version of Wikipedia. The complete
WEX dump is approximately 62GB uncompressed, and con-
tains both XML and text versions of each page. We run
word count on the text portion of the WEX data set, which
is approximately 8.2GB uncompressed.

n-Gram Count: An extension of word count, n-gram
count counts the number of times each group of n words ap-
pears in a text corpus. For example, given“The quick brown
fox jumped over the lazy dog”, 3-gram count would count the
number of occurrences of “The quick brown”, “quick brown
fox”, “brown fox jumped”, etc. We also evaluate n-gram
count on the text portion of the WEX data set.

PageRank: PageRank is a graph algorithm that is widely
used by search engines to rank web pages. Each node in the
graph is given an initial rank. Rank propagates through
the graph by each vertex contributing a fraction of its rank
evenly to each of its neighbors.

PageRank’s map function is given a <vertex ID, adja-

cency list of vertex IDs|initial rank> pair for each
vertex in the graph. It emits <adjacent vertex ID, rank

contribution> pairs for each adjacent vertex ID, and also
re-emits the adjacency list so that the graph can be recon-
structed. PageRank’s reduce function adds the rank contri-
butions for each vertex to compute that vertex’s rank, and
emits the vertex’s existing adjacency list and new rank.

We evaluate PageRank with three different kinds of
graphs. The first (PageRank-U) is a 25M vertex
synthetically-generated graph where each vertex has an edge

to every other vertex with a small, constant probability.
Each vertex has an expected degree of 5,000. The second
(PageRank-PL) is a 250M vertex synthetically-generated
graph where vertex in-degree follows a power law distribu-
tion with values between 100 and 10,000. This simulates a
more realistic page graph where a relatively small number of
pages are linked to frequently. The third (PageRank-WEX)
is a graph derived from page links in the XML portion of
the WEX data set; it is approximately 1.5GB uncompressed
and has 5.3M vertices.

CloudBurst: CloudBurst [21] is a MapReduce im-
plementation of the RMAP [35] algorithm for short-read
gene alignment, which aligns a large collection of small
“query” DNA sequences called reads with a known “refer-
ence” genome. CloudBurst performs this alignment using
a standard technique called seed-and-extend. Both query
and reference sequences are passed to the map function and
emitted as a series of fixed-size seeds. The map function
emits seeds as sequence of <seed, seed metadata> pairs,
where the seed metadata contains information such as the
seed’s location in its parent sequence, whether that parent
sequence was a query or a reference, and the characters in
the sequence immediately before and after the seed.

CloudBurst’s reduce function examines pairs of query and
reference strings with the same seed. For each pair, it com-
putes a similarity score of the DNA characters on either
side of the seed using the Landau-Vishkin algorithm for ap-
proximate string matching. The reduce function emits all
query/reference pairs with a similarity score above a config-
ured threshold.

We evaluate CloudBurst on the lakewash combined v2
data set from University of Washington [15], which we pre-
process using a slightly modified version of the CloudBurst
input loader used in Hadoop.

Click Log Analysis: Another popular MapReduce job is
analysis of click logs. Abstractly, click logs can be viewed as
a collection of <user ID, timestamp|URL> pairs indicating
which page a user loaded at which time. We chose to evalu-
ate one particular type of log analysis task, session tracking.
In this task, we seek to identify disjoint ranges of timestamps
at least some number of seconds apart. For each such range
of timestamps, we output <user ID, start timestamp|end

timestamp|start URL|end URL> pairs.
The map function is a pass-through; it simply groups

records by user ID. The reduce function does a linear scan
through records for a given user ID and reconstructs ses-
sions. For efficiency, it assumes that these records are sorted
in ascending order by timestamp. We describe the implica-
tions of this assumption in the next section.

7.2 Job Implementation Details
In this section, we briefly describe some of the implemen-

tation details necessary for running our collection of example
jobs at maximum efficiency.

Combiners: A common technique for improving the per-
formance of MapReduce jobs is employing a combiner. For
example, word count can emit a single <word, k> pair in-
stead of k <word, 1> pairs. Themis supports the use of com-
biner functions. We opted to implement combiners within
the mapper stage on a job-by-job basis rather than adding an
additional stage. Despite what conventional wisdom would
suggest, we found that combiners actually decreased our per-
formance in many cases because the computational overhead

T
ri

to
n

S
o

rt

S
o

rt
-1

0
0

G

S
o

rt
-5

0
0

G

S
o

rt
-1

T

S
o

rt
-1

.7
5

T

P
ar

et
o

-1
M

P
ar

et
o

-1
0

0
M

P
ar

et
o

-5
0

0
M

C
lo

u
d

B
u

rs
t

P
ag

eR
an

k
-U

P
ag

eR
an

k
-P

L

P
ag

eR
an

k
-W

E
X

W
o

rd
C

o
u

n
t

n
-G

ra
m

C
li

ck
-S

es
si

o
n

s0

20

40

60

80

100

120

T
h

ro
u

g
h

p
u

t
(M

B
/s

/d
is

k
)

Phase One

Phase Two

Figure 7: Performance of evaluated MapReduce
jobs. Maximum sequential disk throughput of ap-
proximately 90 MB/s is shown as a dotted line. Our
TritonSort record from 2011 is shown on the left for
comparison.

of manipulating large data structures was enough to make
the mapper compute-bound. The large size of these data
structures is partially due to our decision to run the com-
biner over an entire job’s intermediate data rather than a
small portion thereof to maximize its effectiveness.

In some cases, however, a small data structure that takes
advantage of the semantics of the data provides a significant
performance increase. For example, our word count MapRe-
duce job uses a combiner that maintains a counter for the
top 25 words in the English language. The combiner up-
dates the appropriate counter whenever it encounters one of
these words rather than creating an intermediate record for
it. At the end of phase one, intermediate records are created
for each of these popular words based on the counter values.

Improving Performance for Small Records: The
map functions in our first implementations of word count
and n-gram count emitted <word/n-gram, 1> pairs. Our
implementations of these map functions emit <hash(word),

1|word> pairs instead because the resulting intermediate
partitions are easier to sort quickly because the keys are
all small and the same size.

Secondary Keys: A näıve implementation of the session
extraction job sorts records for a given user ID by timestamp
in the reduce function. We avoid performing two sorts by
allowing the Sorter stage to use the first few bytes of the
value, called a secondary key, to break ties when sorting.
For example, in the session extraction job the secondary key
is the record’s timestamp.

7.3 Performance
We evaluate the performance of Themis in two ways.

First, we compare performance of the benchmark applica-
tions to the cluster’s hardware limits. Second, we compare
the performance of Themis to that of Hadoop on two bench-
mark applications.

7.3.1 Performance Relative to Disk Speeds
The performance of Themis on the benchmark MapRe-

duce jobs is shown in Figure 7. Performance is measured in

Running Time
Application Hadoop Themis Improvement

Sort-500G 28881s 1789s 16.14x
CloudBurst 2878s 944s 3.05x

Table 6: Performance comparison of Hadoop and
Themis.

terms of MB/s/disk in order to provide a relative compar-
ison to the hardware limitations of the cluster. The 7200
RPM drives in the cluster are capable of approximately 90
MB/s/disk of sequential write bandwidth, which is shown as
a dotted line in the figure. A job running at 90 MB/s/disk
is processing data as fast as it can be written to the disks.

Most of the benchmark applications run at near maxi-
mum speed in both phases. CloudBurst’s poor performance
in phase two is due to the computationally intensive nature
of its reduce function, which is unable to process records fast
enough to saturate the disks. More CPU cores are needed to
drive computationally intensive applications such as Cloud-
Burst at maximum speed in both phases. Notice however
that CloudBurst is still able to take advantage of our archi-
tecture in phase one.

We have included TritonSort’s performance on the Indy
100TB sort benchmark for reference. TritonSort’s 2011 Indy
variant runs a much simpler code base than Themis. We
highlight the fact that Themis’s additional complexity and
flexibility does not impact its ability to perform well on a va-
riety of workloads. Our improved performance in phase one
relative to TritonSort at scale is due to a variety of internal
improvements and optimizations made to the codebase in
the intervening period, as well as the improved memory uti-
lization provided by moving from buffer pools to dynamic
memory management. Performance degradation in phase
two relative to TritonSort is mainly due to additional CPU
and memory pressure introduced by the Reducer stage.

7.3.2 Comparison with Hadoop
We evaluate Hadoop version 1.0.3 on the Sort-500G and

CloudBurst applications. We started with a configuration
based on the configuration used by Yahoo! for their 2009
Hadoop sort record [36]. We optimized Hadoop as best we
could, but found it difficult to get it to run many large paral-
lel transfers without having our nodes blacklisted for running
out of memory.

The total running times for both Hadoop and Themis are
given in Table 6. I/O-bound jobs such as sort are able to
take full advantage of our architecture, which explains why
Themis is more than a factor of 16 faster. As explained
above, CloudBurst is fundamentally compute-bound, but
the performance benefits of the 2-IO property allow the
Themis implementation of CloudBurst to outperform the
Hadoop implementation by a factor of 3.

7.4 Memory Management
In this section, we evaluate the performance of our dif-

ferent memory allocation policies. We also show that our
allocation system is robust in the face of transient changes
in individual stage throughputs.

7.4.1 Memory Allocator Performance
We examine both the individual allocation times of our

different memory allocation policies and their end-to-end

R
ea

d
er

 0
R

ea
d

er
 1

R
ea

d
er

 2
R

ea
d

er
 3

R
ea

d
er

 4
R

ea
d

er
 5

R
ea

d
er

 6
R

ea
d

er
 7

R
ea

d
er

 C
o

n
v

er
te

r
0

R
ea

d
er

 C
o

n
v

er
te

r
1

M
ap

p
er

 0
M

ap
p

er
 1

M
ap

p
er

 2
M

ap
p

er
 3

R
ec

ei
v

er
 0

R
ec

ei
v

er
 C

o
n

v
er

te
r

0
R

ec
ei

v
er

 C
o

n
v

er
te

r
1

D
em

u
x

 0
D

em
u

x
 1

D
em

u
x

 2
D

em
u

x
 3

C
o

al
es

ce
r

0
C

o
al

es
ce

r
10

10

20

30

40

50

60

70

80

90

M
ea

n
 A

ll
o

ca
ti

o
n

 T
im

e
(µ

s)

Quota-based

Constraint-based

Figure 8: Effects of allocation policy on mean allo-
cation times across workers

Allocation Policy Phase One Throughput
Constraint-Based 84.90 MBps/disk

Quota-Based 83.11 MBps/disk

Table 7: Performance of allocation policies

performance. We evaluate the performance on phase one
of a 200GB, 1-node sort job. Table 7 shows that phase one’s
throughput is essentially unaffected by the choice of allo-
cator policy in this particular instance. These performance
numbers can be explained by looking at the mean allocation
time for each worker in the system. Figure 8 shows that
while the constraint-based allocator is more than twice as
slow as the quota-based allocator, the absolute allocation
times are both measured in tens of microseconds, which is
negligible compared to time taken to actually do useful work.

However, the results above only hold in the case where
the constraint-based allocator does not deadlock. While we
never experienced deadlock in phase two, we found it was
quite easy to construct situations in which phase one dead-
locked. For example, the exact same experiment conducted
on a slightly larger data set causes deadlock in phase one
with the constraint-based allocator.

The performance results in Figure 7 demonstrate the
constraint-based allocation policy performs well in phase
two. Because phase two handles entire intermediate par-
titions in memory, its allocations are orders of magnitude
larger than those in phase one. This dramatically increases
the likelihood that a single memory request is larger than
one of the phase’s quotas.

7.4.2 Robustness of the Quota-Based Memory Allo-
cation Policy

We evaluate the robustness of the quota-based memory al-
locator by artificially slowing down the network for a period
of time. We observe the effect on the total quota usage of a
stage in the pipeline. Figure 9 shows that the Reader Con-
verter’s quota usage spikes up to its limit of 2GB in response
to a slow network and then returns back to a steady state
of near 0. A slow network means that stages upstream of
the network are producing data faster than the network can
transmit data. This imbalance leads to data backing up in

0 50 100 150 200 250 300
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5
M

em
o

ry
 Q

u
o

ta
 U

sa
g

e
(G

B
)

Reader Converter Quota

Figure 9: Memory quota usage of the Reader Con-
verter stage. The network was made artificially slow
in the time period designated by the dashed lines.

S
o
rt
-1
0
0
G

S
o
rt
-5
0
0
G

S
o
rt
-1
T

S
o
rt
-1
.7
5
T

P
ar
et
o
-1
M

P
ar
et
o
-1
0
0
M

P
ar
et
o
-5
0
0
M

C
lo
u
d
B
u
rs
t

P
ag
eR

an
k
-U

P
ag
eR

an
k
-P
L

P
ag
eR

an
k
-W

E
X

W
o
rd
C
o
u
n
t

n
-G

ra
m

C
li
ck
-S
es
si
o
n
s0

100

200

300

400

500

600

700

P
a

rt
it

io
n

 S
iz

e
(M

B
)

Figure 10: Partition sizes for various Themis jobs.
Error bars denoting the 95% confidence intervals are
hard to see due to even partitioning.

front of the network. In the absence of the quota allocation
policy, this data backlog grows unbounded.

7.5 Skew Mitigation
Next, we evaluate Themis’s ability to handle skew by ob-

serving the sizes of the intermediate data partitions created
in phase one. Figure 10 shows the partition sizes produced
by Themis on the evaluated applications. The error bars
denoting the 95% confidence intervals are small, indicating
that all partitions are nearly equal in size. This is unsurpris-
ing for applications with uniform data, such as sort. How-
ever, Themis also achieves even partitioning on very skewed
data sets, such as Pareto-distributed sort, PageRank, and
WordCount. PageRank-WEX has fairly small partitions rel-
ative to the other jobs because its intermediate data size is
not large enough for phase zero to create an integer number
of partitions with the desired size.

7.6 Write Sizes
One of primary goals of phase one is to do large writes

to each partition to avoid unnecessary disk seeks. Figure 11
shows the median write sizes of the various jobs we evalu-
ated. For jobs like Sort and n-Gram where the map func-

S
o
rt
-1
0
0
G

S
o
rt
-5
0
0
G

S
o
rt
-1
T

S
o
rt
-1
.7
5
T

P
ar
et
o
-1
M

P
ar
et
o
-1
0
0
M

P
ar
et
o
-5
0
0
M

C
lo
u
d
B
u
rs
t

P
ag
eR

an
k
-U

P
ag
eR

an
k
-P
L

P
ag
eR

an
k
-W

E
X

W
o
rd
C
o
u
n
t

n
-G

ra
m

C
li
ck
-S
es
si
o
n
s0

2

4

6

8

10

12

14

M
ed

ia
n

 W
ri

te
 S

iz
e

(M
B

)

Figure 11: Median write sizes for various Themis
jobs

tion is extremely simple and mappers can map data as fast
as readers can read it, data buffers up in the Chainer stage
and all writes are large. As the amount of intermediate data
per node grows, the size of a chain that can be buffered for
a given partition decreases, which fundamentally limits the
size of a write. For example, Sort-1.75T writes data to 2832
partitions, which means that its average chain length is not
expected to be longer than about 5 MB given a receiver
memory quota of 14GB; note, however, that the mean write
size is above this minimum value, indicating that the writer
is able to take advantage of temporary burstiness in activity
for certain partitions. If the stages before the Writer stage
cannot quite saturate it (such as in WordCount, CloudBurst
and PageRank), chains remain fairly small. Here the mini-
mum chain size of 4.5 MB ensures that writes are still rea-
sonably large. In the case of PageRank-WEX, the data size
is too small to cause the chains to ever become very large.

8. RELATED WORK
There is a large continuum of fault tolerance options be-

tween task-level restart and job-level restart, including dis-
tributed transactions [26], checkpointing and rollback [11],
lineage-based recovery [41] and process-pairs replication [34].
Each fault tolerance approach introduces its own overheads
and has its own complexities and limitations. With Themis,
we choose to focus our efforts on creating a MapReduce sys-
tem model that is able to handle large real-world data sets
while utilizing the resources of an existing cluster as much
as possible.

Recovery-Oriented Computing (ROC) [30, 5] is a research
vision that focuses on efficient recovery from failure, rather
than focusing exclusively on failure avoidance. This is help-
ful in environments where failure is inevitable, such as data
centers. The design of task-level fault tolerance in existing
MapReduce implementations shares similar goals with the
ROC project.

Sailfish [28] aims to mitigate partitioning skew in MapRe-
duce by choosing the number of reduce tasks and intermedi-
ate data partitioning dynamically at runtime. It chooses

these values using an index constructed on intermediate
data. Sailfish and Themis represent two design points in a
space with the similar goal of improving MapReduce’s per-
formance through more efficient disk I/O.

Several efforts aim to improve MapReduce’s efficiency and
performance. Some focus on runtime changes to better han-
dle common patterns like job iteration [4], while others have
extended the programming model to handle incremental up-
dates [18, 26]. Work on new MapReduce scheduling dis-
ciplines [42] has improved cluster utilization at a map- or
reduce-task granularity by minimizing the time that a node
waits for work. Tenzing [6], a SQL implementation built
atop the MapReduce framework at Google, relaxes or re-
moves the restriction that intermediate data be sorted by
key in certain situations to improve performance.

Massively parallel processing (MPP) databases often per-
form aggregation in memory to eliminate unnecessary I/O
if the output of that aggregation does not need to be sorted.
Themis could skip an entire read and write pass by pipelin-
ing intermediate data through the reduce function directly
if the reduce function was known to be commutative and
associative. We chose not to do so to keep Themis’s op-
erational model equivalent to the model presented in the
original MapReduce paper.

Characterizing input data in both centralized and dis-
tributed contexts has been studied extensively in the
database systems community [19, 20, 13], but many of
the algorithms studied in this context assume that records
have a fixed size and are hence hard to adapt to variably-
sized, skewed records. Themis’s skew mitigation techniques
bear strong resemblance to techniques used in MPP shared-
nothing database systems [9].

The original MapReduce paper [8] acknowledges the role
that imbalance can play on overall performance, which can
be affected by data skew. SkewReduce [16] alleviates the
computational skew problem by allowing users to specify
a customized cost function on input records. Partitioning
across nodes relies on this cost function to optimize the dis-
tribution of data to tasks. SkewTune [17] proposes a more
general framework to handle skew transparently, without re-
quiring hints from users. SkewTune is activated when a slot
becomes idle in the cluster, and the task with the greatest
estimated remaining time is repartitioned to take advantage
of that slot. This reallocates the unprocessed input data
through range-partitioning, similar to Themis’s phase zero.

9. LIMITATIONS AND FUTURE WORK
Themis’s high level of performance is predicated on its

ability to tightly control access to its host machine’s I/O
and memory. As a consequence, it is unclear how Themis
would perform when sharing a cluster of machines with other
applications. It is possible that some of Themis’s features
(such as its unified control over disk I/O) might be incorpo-
rated into a lower-level service that all processes could share,
but we have not explored this approach.

At present, phase one of Themis’s execution is limited by
the speed of the slowest node, and is thus negatively affected
by stragglers. Since Themis does not split its jobs into tasks,
it is harder for it to support traditional methods of strag-
gler mitigation such as speculative execution. Investigating
alternate means of straggler mitigation is the subject of on-
going work.

Our current implementation of Themis assumes that jobs

will execute serially. We realize the limitations of this re-
striction in real-world MapReduce deployments, and are ac-
tively developing a version of Themis that allows multiple
MapReduce jobs to execute concurrently while being man-
aged by a single instance of Themis’s memory and I/O man-
agement subsystems, hence maintaining both high perfor-
mance and the 2-IO property.

10. CONCLUSIONS
Many MapReduce jobs are I/O-bound, and so minimizing

the number of I/O operations is critical to improving their
performance. In this work, we present Themis, a MapRe-
duce implementation that meets the 2-IO property, mean-
ing that it issues the minimum number of I/O operations
for jobs large enough to exceed memory. To avoid material-
izing intermediate results, Themis foregoes task-level fault
tolerance, relying instead on job-level fault tolerance. Since
the 2-IO property prohibits it from spilling records to disk,
Themis must manage memory dynamically and adaptively.
To ensure that writes to disk are large, Themis adopts a cen-
tralized, per-node disk scheduler that batches records pro-
duced by different mappers.

There exist a large and growing number of clusters that
can process petabyte-scale jobs, yet are small enough to ex-
perience a qualitatively lower failure rate than warehouse-
scale clusters. We argue that these deployments are
ideal candidates to adopt more efficient implementations of
MapReduce, which result in higher overall performance than
more pessimistic implementations. Themis has been able to
implement a wide variety of MapReduce jobs at nearly the
sequential speed of the underlying storage layer, and is on
par with TritonSort’s record sorting performance.

11. ACKNOWLEDGMENTS
The authors wish to thank Kenneth Yocum for his valu-

able input, as well as Mehul Shah and Chris Nyberg for
their input on Themis’s approach to sampling. This work
was sponsored in part by NSF Grants CSR-1116079 and
MRI CNS-0923523, as well as through donations by Cisco
Systems and a NetApp Faculty Fellowship.

12. REFERENCES
[1] A. Aggarwal and J. Vitter. The Input/Output

Complexity of Sorting and Related Problems. CACM,
31(9), Sept. 1988.

[2] E. Anderson and J. Tucek. Efficiency Matters! In
HotStorage, 2009.

[3] E. Bauer, X. Zhang, and D. Kimber. Practical System
Reliability (pg. 226). Wiley-IEEE Press, 2009.

[4] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: Efficient Iterative Data Processing on Large
Clusters. In VLDB, 2010.

[5] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot – A Technique for Cheap
Recovery. In OSDI, 2004.

[6] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal,
P. Aragonda, V. Lychagina, Y. Kwon, and M. Wong.
Tenzing: A SQL Implementation On The MapReduce
Framework. In Proc. VLDB Endowment, 2011.

[7] Dell and Cloudera Hadoop Platform.
http://www.cloudera.com/company/press-center/

releases/dell-and-cloudera-collaborate-to-

enable-large-scale-data-analysis-and-modeling-

through-open-source/.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, 2004.

[9] D. DeWitt and J. Gray. Parallel Database Systems:
The Future of High Performance Database Systems.
CACM, 35(6), June 1992.

[10] D. DeWitt, J. Naughton, and D. Schneider. Parallel
Sorting on a Shared-Nothing Architecture Using
Probabilistic Splitting. In PDIS, 1991.

[11] E. N. M. Elnozahy, L. Alvisi, Y. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM CSUR, 34(3), Sept.
2002.

[12] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A.
Truong, L. Barroso, C. Grimes, and S. Quinlan.
Availability in Globally Distributed Storage Systems.
In OSDI, 2010.

[13] M. Hadjieleftheriou, J. Byers, and G. Kollios. Robust
Sketching and Aggregation of Distributed Data
Streams. Technical Report 2005-011, Boston
University, 2005.

[14] Hadoop PoweredBy Index.
http://wiki.apache.org/hadoop/PoweredBy.

[15] B. Howe. lakewash combined v2.genes.nucleotide.
https://dada.cs.washington.edu/research/
projects/db-data-L1_bu/escience_datasets/

seq_alignment/.

[16] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
Skew-Resistant Parallel Processing of
Feature-Extracting Scientific User-Defined Functions.
In SoCC, 2010.

[17] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
SkewTune: Mitigating Skew in MapReduce
Applications. In SIGMOD, 2012.

[18] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful Bulk Processing for Incremental
Analytics. In SoCC, 2010.

[19] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random Sampling Techniques for Space Efficient
Online Computation of Order Statistics of Large
Datasets. In SIGMOD, 1999.

[20] J. P. McDermott, G. J. Babu, J. C. Liechty, and D. K.
Lin. Data Skeletons: Simultaneous Estimation of
Multiple Quantiles for Massive Streaming Datasets
with Applications to Density Estimation. Statistics
and Computing, 17(4), Dec. 2007.

[21] Michael C Schatz. CloudBurst: Highly Sensitive Read
Mapping with MapReduce. Bioinformatics,
25(11):1363–9, 2009.

[22] J. C. Mogul and K. K. Ramakrishnan. Eliminating
Receive Livelock in an Interrupt-Driven Kernel. ACM
TOCS, 15(3), Aug. 1997.

[23] C. Monash. Petabyte-Scale Hadoop Clusters (Dozens
of Them). http://www.dbms2.com/2011/07/06/
petabyte-hadoop-clusters/.

[24] W. A. Najjar, E. A. Lee, and G. R. Gao. Advances in
the Dataflow Computational Model. Parallel
Computing, 25(13):1907 – 1929, 1999.

[25] S. Nath, H. Yu, P. B. Gibbons, and S. Seshan.

Subtleties in Tolerating Correlated Failures in
Wide-Area Storage Systems. In NSDI, 2006.

[26] D. Peng and F. Dabek. Large-Scale Incremental
Processing Using Distributed Transactions and
Notifications. In OSDI, 2010.

[27] E. Pinheiro, W. Weber, and L. A. Barroso. Failure
Trends in a Large Disk Drive Population. In FAST,
2007.

[28] S. Rao, R. Ramakrishnan, A. Silberstein,
M. Ovsiannikov, and D. Reeves. Sailfish: A framework
for large scale data processing. Technical Report
YL-2012-002, Yahoo! Research, 2012.

[29] A. Rasmussen, G. Porter, M. Conley, H. V.
Madhyastha, R. N. Mysore, A. Pucher, and
A. Vahdat. TritonSort: A Balanced Large-Scale
Sorting System. In NSDI, 2011.

[30] Recovery-Oriented Computing.
http://roc.cs.berkeley.edu/.

[31] Remzi H. Arpaci-Dusseau and Andrea C.
Arpaci-Dusseau. Fail-Stutter Fault Tolerance. In
HotOS, 2001.

[32] B. Schroeder and G. Gibson. A Large-Scale Study of
Failures in High-Performance Computing Systems. In
DSN, 2006.

[33] B. Schroeder and G. A. Gibson. Understanding Disk
Failure Rates: What Does an MTTF of 1,000,000
Hours Mean to You? ACM TOS, 3(3), Oct. 2007.

[34] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and
M. J. Franklin. Flux: An Adaptive Partitioning
Operator for Continuous Query Systems. In ICDE,
2003.

[35] A. D. Smith and W. Chung. The RMAP Software for
Short-Read Mapping. http://rulai.cshl.edu/rmap/.

[36] Sort Benchmark. http://sortbenchmark.org/.

[37] J. S. Vitter. Random Sampling with a Reservoir. ACM
TOMS, 11(1), Mar. 1985.

[38] Freebase Wikipedia Extraction (WEX).
http://wiki.freebase.com/wiki/WEX.

[39] Apache Hadoop. http://hadoop.apache.org/.

[40] Scaling Hadoop to 4000 Nodes at Yahoo!
http://developer.yahoo.net/blogs/hadoop/2008/
09/scaling_hadoop_to_4000_nodes_a.html.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In NSDI, 2012.

[42] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce Performance in
Heterogeneous Environments. In OSDI, 2008.

APPENDIX
A. EXPECTED RUNNING TIME OF A

FAILED JOB
Let T be the job’s duration and MTTF be the mean time

to failure of the cluster. In our model, failure occurs as a
Poisson process. We compute the expected running time of
a failed job (denoted TF) as follows:

TF =

∫ T

0

t · 1

MTTF
e−

t
MTTF dt

=
[
−te−

t
MTTF −MTTF · e−

t
MTTF

]t=T

t=0

= MTTF − (T +MTTF)e−
T

MTTF (3)

Therefore, if the job duration T is much larger than the
MTTF of the cluster (T �MTTF), Equation 3 implies that
TF ≈ MTTF , and we expect the job to fail. On the other
hand, if T �MTTF , Equation 3 implies that TF ≈ T , and
we expect the job to succeed.

B. EXPECTED COMPLETION TIME OF A
THEMIS JOB

Let p denote the probability of failure in a single Themis
job. Let T denote the running time of the job when there
are no failures.

Consider a situation in which the job fails during the first
(n−1) trials and completes in the nth trial. The probability
of this event is pn−1(1−p). Note that a successful trial takes
time T and a failed trial takes time TF as in Appendix A.
To simplify our notation, let α = TF /T be the fraction of its
successful runtime the failed job spent running. Then the
total running time in this case is

(n− 1)αT + T = ((n− 1)α+ 1)T.

By considering such an event for all possible values of n,
we get the expected running time to completion for the job:

S(p, T) =

∞∑
n=1

((n− 1)α+ 1)T · pn−1(1 − p)

= T (1 − p)

∞∑
n=1

(
αnpn−1 + (1 − α)pn−1)

= T (1 − p)

(
α

∞∑
n=1

npn−1 + (1 − α)

∞∑
n=1

pn−1

)

= T (1 − p)

(
α

1

(1 − p)2
+ (1 − α)

1

1 − p

)
= T

(
α

p

1 − p
+ 1

)
(4)

